首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   218936篇
  免费   29088篇
  国内免费   25485篇
电工技术   20486篇
技术理论   8篇
综合类   16551篇
化学工业   41988篇
金属工艺   9484篇
机械仪表   13601篇
建筑科学   13043篇
矿业工程   3850篇
能源动力   7674篇
轻工业   16142篇
水利工程   3706篇
石油天然气   6220篇
武器工业   2437篇
无线电   32385篇
一般工业技术   25935篇
冶金工业   5861篇
原子能技术   3649篇
自动化技术   50489篇
  2024年   533篇
  2023年   3596篇
  2022年   6092篇
  2021年   8082篇
  2020年   7795篇
  2019年   7086篇
  2018年   6467篇
  2017年   8790篇
  2016年   9538篇
  2015年   11011篇
  2014年   11422篇
  2013年   14655篇
  2012年   16800篇
  2011年   18919篇
  2010年   13701篇
  2009年   13600篇
  2008年   14660篇
  2007年   16445篇
  2006年   15619篇
  2005年   13286篇
  2004年   11242篇
  2003年   8890篇
  2002年   6826篇
  2001年   5104篇
  2000年   4116篇
  1999年   3368篇
  1998年   2757篇
  1997年   2208篇
  1996年   1865篇
  1995年   1640篇
  1994年   1427篇
  1993年   1138篇
  1992年   922篇
  1991年   743篇
  1990年   625篇
  1989年   471篇
  1988年   359篇
  1987年   228篇
  1986年   199篇
  1985年   248篇
  1984年   219篇
  1983年   159篇
  1982年   201篇
  1981年   100篇
  1980年   106篇
  1979年   43篇
  1978年   21篇
  1977年   25篇
  1959年   27篇
  1957年   16篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
ZnO rice like nonarchitects are grafted on the graphene carbon core via a rapid microwave synthesis route. The prepared grafted systems are characterized via XRD, SEM, RAMAN, and XPS to examined the structural and morphological parameters. Zinc oxide grafted graphene sheets (ZnO-G) are further doped in β-phase of polyvinylidene fluoride (PVDF) to prepare the polymer nanocomposites (PNCs) via mixed solvent approach (THF/DMF). β-phase confirmation of PVDF PNCs is done by FTIR studies. It is observed that ZnO-G filler enhances the β-phase content in the PNCs. Non-doped PVDF and PNCs are further studied for rheological behavior under the shear rate of 1–100 s−1. Doping of ZnO-G dopant to the PVDF matrix changes its discontinuous shear thickening (DST) behavior to continues shear thickening behavior (CST). Hydrocluster formation and their interaction with the dopant could be the reason for this striking DST to CST behavioral change. Strain amplitude sweep (10−3% -10%) oscillatory test reveals that the PNCs shows extended linear viscoelastic region with high elastic modulus and lower viscous modulus. Effective shear thickening behavior and strong elastic strength of these PNCs present their candidature for various fields including mechanical and soft body armor applications.  相似文献   
62.
Individually, photoredox catalysis (PC) and photodynamic therapy (PDT) are well-established concepts that have experienced a remarkable resurgence in recent years, leading to significant progress in organic synthesis for PC and clinical approval of anticancer drugs for PDT. But, very recently, new photoredox catalyst systems based on Ir(III) and Ru(II) complexes have garnered significant interest because they can simultaneously be used as PDT agents apart from their demonstrated PC activity. This highlight discusses the unique PC behavior of emerging Ir(III)- and Ru(II)-based systems while also examining their potential PDT activity in cancer treatment.  相似文献   
63.
Phosphodiesterases (PDEs) hydrolyze cyclic nucleotides to modulate multiple signaling events in cells. PDEs are recognized to actively associate with cyclic nucleotide receptors (protein kinases, PKs) in larger macromolecular assemblies referred to as signalosomes. Complexation of PDEs with PKs generates an expanded active site that enhances PDE activity. This facilitates signalosome-associated PDEs to preferentially catalyze active hydrolysis of cyclic nucleotides bound to PKs and aid in signal termination. PDEs are important drug targets, and current strategies for inhibitor discovery are based entirely on targeting conserved PDE catalytic domains. This often results in inhibitors with cross-reactivity amongst closely related PDEs and attendant unwanted side effects. Here, our approach targeted PDE–PK complexes as they would occur in signalosomes, thereby offering greater specificity. Our developed fluorescence polarization assay was adapted to identify inhibitors that block cyclic nucleotide pockets in PDE–PK complexes in one mode and disrupt protein-protein interactions between PDEs and PKs in a second mode. We tested this approach with three different systems—cAMP-specific PDE8–PKAR, cGMP-specific PDE5–PKG, and dual-specificity RegA–RD complexes—and ranked inhibitors according to their inhibition potency. Targeting PDE–PK complexes offers biochemical tools for describing the exquisite specificity of cyclic nucleotide signaling networks in cells.  相似文献   
64.
高熵形状记忆合金是在等原子比NiTi合金的基础上,结合高熵合金的概念,逐渐发展起来的一种新型高温形状记忆合金。近年来,已开发出了综合性能优异的(TiZrHf)50(NiCoCu)50系和(TiZrHf)50(NiCuPd)50系高熵形状记忆合金,引起了广泛的关注和研究兴趣。本文从物相组成、微观组织、马氏体相变行为、形状记忆效应和超弹性等角度出发,综述了高熵形状记忆合金的研究进展,并对高熵形状记忆合金未来的研究重点进行了展望。  相似文献   
65.
This work correlates the charge carrier transport mechanism of silicon oxycarbide-based thin films with their morphology and thermal stress. Segregation of highly-graphitized carbon-rich, oxygen-depleted C/SiC areas homogeneously dispersed within an oxygen-rich C/SiOC matrix was seen on the 500 nm-SiOC thin films. Compressive biaxial stress induced by the mismatch with the Si-substrate thermal expansion coefficient was calculated at 109 MPa. Through Hall measurements, p-type carriers were shown dominating the SiOC film similar to monolithic samples. Thin films and monoliths have comparable carrier concentrations while the carrier mobility in SiOC thin films was 2 magnitudes higher than that of monolithic samples and is considered a consequence of the compressive thermal stress acting on the film. Improved conductivity of 16 S cm -1 is measured for the SiOC thin film sample which is assumed considering the enhanced carrier mobility alongside the reduced percolation threshold ascribed to the phase-separated morphology of the thin film.  相似文献   
66.
The introduction of multiple heterogeneous interfaces in a ceramic is an efficient way to increase its thermal resistance. Novel porous SiC–SiO2–Al2O3–TiO2 (SSAT) ceramics were fabricated to achieve multiple heterogeneous interfaces by sintering equal volumes of SiC, SiO2, Al2O3, and TiO2 compacted powders with polysiloxane as a bonding phase and carbon as a template at 600 °C in air. The porosity could be controlled between 66% and 74% by adjusting the amounts of polysiloxane and the carbon template. The lowest thermal conductivity (0.059 W/(m·K) at 74% porosity) obtained in this study is an order of magnitude lower than those (0.2–1.3 W/(m·K)) of porous monolithic SiC, SiO2, Al2O3, and TiO2 ceramics at an equivalent porosity. The typical specific compressive strength value of the porous SSAT ceramics at 74% porosity was 3.2 MPa cm3/g.  相似文献   
67.
68.
Cubic zirconia single crystals stabilized with yttria and doped with Gd2O3 (0.10–5.00 mol%) were prepared by the optical floating zone method, and characterized by a combination of X-ray diffraction (XRD), and Raman, electron paramagnetic resonance (EPR), ultraviolet–visible (UV–Vis), photoluminescence excitation (PLE) and photoluminescence (PL) spectroscopic techniques. XRD and Raman spectroscopy showed that the crystal samples were all in the cubic phase, whereas the ceramic sample consisted of a mixture of monoclinic and cubic phases. The absorption spectrum showed four peaks at 245, 273, 308, and 314 nm in the ultraviolet region, and the optical band gap differed between samples with ≤3.00 mol% and those with >3.00 mol% Gd2O3. The emission spectrum showed a weak peak at 308 nm and a strong peak at 314 nm, which are attributed to the 6P5/2 → 8S7/2 and 6P7/2 → 8S7/2 transitions of Gd3+, respectively. The intensities of the peaks in the excitation and emission spectra increased with Gd3+ concentration, reached a maximum at 2.00 mol%, then decreased with higher concentrations. This quenching is considered to be the result of the electric dipole-dipole interactions, and this interpretation is supported by the Gd3+ EPR spectra, which showed progressive broadening with increasing Gd3+ concentration throughout the concentration range investigated.  相似文献   
69.
Analog integrated circuit design has as integral parts both analytical reasoning and numerical validation in the process from topology construction to sizing. Given a circuit topology, different circuit sizing results can be obtained from different processes of sizing inference. Sizing methods by simulation-based numerical searching have been a continuously studied subject. However, almost all approaches in this category require an overwhelming number of circuit simulations to arrive at an optimized sizing result. On the other hand, many published manual sizing methods by using the conventional device equations also require repeated SPICE simulations to correct the equation-based sizing results. This paper proposes a systematic gm/ID-based initial sizing method specifically customized for designing multiple-stage operational amplifiers (Op Amps). A main feature of the proposal is to use circuit-level design equations as constraints on the gm/ID table lookup method to substantially reduce the uncertainty in the sizing calculations. As a result, a significant amount of SPICE based correction work can be reduced to complete an initial sizing. The proposed sizing procedure includes a few regular sizing rules customized to the configuration of multi-stage Op Amps. We validate the proposed sizing method by application to several multi-stage Op Amp examples with a capacitive load or Miller compensation. Simulations have justified that the produced initial sizing results can achieve most of the prespecified design targets.  相似文献   
70.
It is believed that promoting the fraction of ferroelectric orthorhombic phase (o-phase) through O-poor growth conditions can increase the spontaneous polarization of HfO2 and (Hf,Zr)O2 thin films. However, the first-principles calculations show that the growth may be limited by the easy formation of point defects in the orthorhombic and tetragonal phases of HfO2, ZrO2, and (Hf,Zr)O2. Their dominant defects, O interstitial (Oi) under O-rich conditions and O vacancy (VO) under O-poor condition, have low formation energies and quite high density (1016–1019 cm−3 for 800–1400 K growth temperature). Especially, Oi has negative formation energy in tetragonal HfO2 under O-rich condition, causing non-stoichiometry and limiting the crystalline-seed formation during o-phase growth. High-density defects can cause disordering of dipole moments and increase leakage current, both diminishing the polarization. These results explain the experimental puzzle that the measured polarization is much lower than the ideal value even in O-poor thin films and highlight that controlling defects is as important as promoting the o-phase fraction for enhancing ferroelectricity. The O-intermediate condition (average of O-rich and O-poor conditions) and low growth temperature are proposed for fabricating HfO2 and (Hf,Zr)O2 with fewer defects, lower leakage current, and stronger ferroelectricity, which challenges the belief that O-poor condition is optimal.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号